About 508,000 results
Open links in new tab
  1. regression - Converting standardized betas back to original …

    I have a problem where I need to standardize the variables run the (ridge regression) to calculate the ridge estimates of the betas. I then need to convert these back to the original variables scale.

  2. How should outliers be dealt with in linear regression analysis?

    What statistical tests or rules of thumb can be used as a basis for excluding outliers in linear regression analysis? Are there any special considerations for multilinear regression?

  3. What's the difference between correlation and simple linear …

    Aug 1, 2013 · Note that one perspective on the relationship between regression & correlation can be discerned from my answer here: What is the difference between doing linear regression on …

  4. regression - What does it mean to regress a variable against …

    Dec 21, 2016 · Those words connote causality, but regression can work the other way round too (use Y to predict X). The independent/dependent variable language merely specifies how one …

  5. regression - Difference between forecast and prediction ... - Cross ...

    I was wondering what difference and relation are between forecast and prediction? Especially in time series and regression? For example, am I correct that: In time series, forecasting seems …

  6. When conducting multiple regression, when should you center …

    Jun 5, 2012 · In some literature, I have read that a regression with multiple explanatory variables, if in different units, needed to be standardized. (Standardizing consists in subtracting the mean …

  7. regression - Interpreting the residuals vs. fitted values plot for ...

    None of the three plots show correlation (at least not linear correlation, which is the relevant meaning of 'correlation' in the sense in which it is being used in "the residuals and the fitted …

  8. regression - What is residual standard error? - Cross Validated

    A quick question: Is "residual standard error" the same as "residual standard deviation"? Gelman and Hill (p.41, 2007) seem to use them interchangeably.

  9. regression - When should I use lasso vs ridge? - Cross Validated

    Ridge regression is useful as a general shrinking of all coefficients together. It is shrinking to reduce the variance and over fitting. It relates to the prior believe that coefficient values …

  10. regression - Linear vs Nonlinear Machine Learning Algorithms

    Jan 6, 2021 · Three linear machine learning algorithms: Linear Regression, Logistic Regression and Linear Discriminant Analysis. Five nonlinear algorithms: Classification and Regression …